Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: Parabolic equations
نویسندگان
چکیده
In this paper, we study some new connections between parabolic Liouvilletype theorems and local and global properties of nonnegative classical solutions to superlinear parabolic problems, with or without boundary conditions. Namely, we develop a general method for derivation of universal, pointwise a priori estimates of solutions from Liouville-type theorems, which unifies and improves many results concerning a priori bounds, decay estimates and initial and final blow-up rates. For example, for the equation ut−∆u = up on a domain Ω, possibly unbounded and not necessarily convex, we obtain initial and final blow-up rate estimates of the form u(x, t) ≤ C(Ω, p) (1 + t 1 p−1 + (T − t) 1 p−1 ). Our method is based on rescaling arguments combined with a key “doubling” property, and it is facilitated by parabolic Liouville-type theorems for the whole ∗Supported in part by NSF Grant DMS-0400702 †Supported in part by VEGA Grant 1/3021/06
منابع مشابه
Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic equations and systems
In this paper, we study some new connections between Liouville-type theorems and local properties of nonnegative solutions to superlinear elliptic problems. Namely, we develop a general method for derivation of universal, pointwise a priori estimates of local solutions from Liouville-type theorems, which provides a simpler and unified treatment for such questions. The method is based on rescali...
متن کاملLiouville Theorems, a Priori Estimates, and Blow-up Rates for Solutions of Indefinite Superlinear Parabolic Problems
In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.
متن کاملLiouville-type theorems and decay estimates for solutions to higher order elliptic equations
Liouville-type theorems are powerful tools in partial differential equations. Boundedness assumption of solutions are often imposed in deriving such Liouville-type theorems. In this paper, we establish some Liouville-type theorems without the boundedness assumption of nonnegative solutions to certain classes of elliptic equations and systems. Using a rescaling technique and doubling lemma devel...
متن کاملLiouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations
We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation ut = ∆u + |u|p−1u. We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence ...
متن کاملLiouville-type theorems for fully nonlinear elliptic equations and systems in half spaces
In [LWZ], we established Liouville-type theorems and decay estimates for solutions of a class of high order elliptic equations and systems without the boundedness assumptions on the solutions. In this paper, we continue our work in [LWZ] to investigate the role of boundedness assumption in proving Liouville-type theorems for fully nonlinear equations. We remove the boundedness assumption of sol...
متن کامل